Part Number Hot Search : 
E103M EFMA210 95776 SR103 N271MP SR320 CRB32F1 68HC908G
Product Description
Full Text Search
 

To Download M95080-MB3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/40 october 2004 m95160 m95080 16kbit and 8kbit serial spi bus eeprom with high speed clock features summary compatible with spi bus serial interface (positive clock spi modes) single supply voltage: ? 4.5 to 5.5v for m95xxx ? 2.5 to 5.5v for m95xxx-w ? 1.8 to 5.5v for m95xxx-r high speed ? 10mhz clock rate, 5ms write time status register hardware protection of the status register byte and page write (up to 32 bytes) self-timed programming cycle adjustable size read-only eeprom area enhanced esd protection more than 1 million erase/write cycles more than 40-year data retention table 1. product list figure 1. packages reference part number m95160 m95160 m95160-w m95160-r m95080 m95080 m95080-w m95080-r pdip8 (bn) so8 (mn) 150 mil width 8 1 tssop8 (dw) 169 mil width tssop8 (ds) 3x3mm2 body size (msop) 8 1 ufdfpn8 (mb) 2x3mm2 (mlp)
m95160, m95080 2/40 table of contents features summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 table 1. product list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 figure 1. packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 figure 2. logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 figure 3. dip, so, tssop and mlp connections (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 table 2. signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 serial data output (q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 serial data input (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 serial clock (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 chip select (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 hold (hold) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 write protect (w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 connecting to the spi bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 figure 4. bus master and memory devices on the spi bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 spi modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 figure 5. spi modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 power on reset: vcc lock-out write protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 active power and standby power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 hold condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 wip bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 wel bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 bp1, bp0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 srwd bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 table 3. status register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 data protection and protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 table 4. write-protected block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 figure 6. block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 table 5. instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 write enable (wren) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3/40 m95160, m95080 figure 7. write enable (wren) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 write disable (wrdi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 8. write disable (wrdi) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 read status register (rdsr). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 wip bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 wel bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 bp1, bp0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 srwd bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 9. read status register (rdsr) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 write status register (wrsr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 table 6. protection modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 table 7. address range bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 10.write status register (wrsr) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 read from memory array (read) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 11.read from memory array (read) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 write to memory array (write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 figure 12.byte write (write) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 13.page write (write) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 power-up and delivery state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 power-up state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 maximum rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 table 8. absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 dc and ac parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 table 9. operating conditions (m95xxx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 table 10. operating conditions (m95xxx-w). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 table 11. operating conditions (m95xxx-r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 table 12. ac measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 14.ac measurement i/o waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 table 13. capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 table 14. dc characteristics (m95xxx, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 table 15. dc characteristics (m95xxx, device grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 table 16. dc characteristics (m95xxx-w, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 table 17. dc characteristics (m95xxx-w, device grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 18. dc characteristics (m95xxx-r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 19. ac characteristics (m95xxx, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 table 20. ac characteristics (m95xxx, device grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 table 21. ac characteristics (m95xxx-w, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 table 22. ac characteristics (m95xxx-w, device grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 table 23. ac characteristics (m95xxx-r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 figure 15.serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 16.hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 17.output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
m95160, m95080 4/40 package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 figure 18.pdip8 ? 8 pin plastic dip, 0.25mm lead frame, package outline . . . . . . . . . . . . . . . . . 33 table 24. pdip8 ? 8 pin plastic dip, 0.25mm lead frame, package mechanical data . . . . . . . . . . 33 figure 19.so8 narrow ? 8 lead plastic small outline, 150 mils body width, package outline . . . . 34 table 25. so8 narrow ? 8 lead plastic small outline, 150 mils body width, mechanical data . . . . 34 figure 20.ufdfpn8 (mlp8) 8-lead ultra thin fine pitch dual flat package no lead 2x3mm2, outline 35 table 26. ufdfpn8 (mlp8) 8-lead ultra thin fine pitch dual flat package no lead 2x3mm2, data . 35 figure 21.tssop8 ? 8 lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . 36 table 27. tssop8 ? 8 lead thin shrink small outline, package mechanical data . . . . . . . . . . . . 36 figure 22.tssop8 3x3mm2 ? 8 lead thin shrink small outline, 3x3mm2 body size, package outline 37 table 28. tssop8 3x3mm2 ? 8 lead thin shrink small outline, 3x3mm2 body size, mechanical data 37 part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 table 29. ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 table 30. how to identify present and previous products by the process identification letter . . . 38 revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 table 31. document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5/40 m95160, m95080 summary description these electrically erasable programmable memo- ry (eeprom) devices are accessed by a high speed spi-compatible bus. the memory array is organized as 2048 x 8 bit (m95160), and 1024 x 8 bit (m95080). the device is accessed by a simple serial interface that is spi-compatible. the bus signals are c, d and q, as shown in table 2. and figure 2. . the device is selected when chip select (s ) is tak- en low. communications with the device can be interrupted using hold (hold ). figure 2. logic diagram figure 3. dip, so, tssop and mlp connections (top view) note: see package mechanical section for package dimen- sions, and how to identify pin-1. table 2. signal names ai01789c s v cc m95xxx hold v ss w q c d c serial clock d serial data input q serial data output s chip select w write protect hold hold v cc supply voltage v ss ground d v ss c hold q sv cc w ai01790d m95xxx 1 2 3 4 8 7 6 5
m95160, m95080 6/40 signal description during all operations, v cc must be held stable and within the specified valid range: v cc (min) to v cc (max). all of the input and output signals must be held high or low (according to voltages of v ih , v oh , v il or v ol , as specified in table 14. to table 18. ). these signals are described next. serial data output (q). this output signal is used to transfer data serially out of the device. data is shifted out on the falling e dge of serial clock (c). serial data input (d). this input signal is used to transfer data serially into the device. it receives in- structions, addresses, and the data to be written. values are latched on the rising edge of serial clock (c). serial clock (c). this input signal provides the timing of the serial interface. instructions, address- es, or data present at serial data input (d) are latched on the rising edge of serial clock (c). data on serial data output (q) changes after the falling edge of serial clock (c). chip select (s ). when this input signal is high, the device is deselected and serial data output (q) is at high impedance. unless an internal write cycle is in progress, the device will be in the stand- by power mode. driving chip select (s ) low se- lects the device, placing it in the active power mode. after power-up, a falling edge on chip select (s ) is required prior to the start of any instruction. hold (hold ). the hold (hold ) signal is used to pause any serial communications with the device without deselecting the device. during the hold condition, the serial data output (q) is high impedance, and serial data input (d) and serial clock (c) are don?t care. to start the hold condition, the device must be se- lected, with chip select (s ) driven low. write protect (w ). the main purpose of this in- put signal is to freeze the size of the area of mem- ory that is protected against write instructions (as specified by the values in the bp1 and bp0 bits of the status register). this pin must be driven either high or low, and must be stable during all write instructions.
7/40 m95160, m95080 connecting to the spi bus these devices are fully compatible with the spi protocol. all instructions, addresses and input data bytes are shifted in to the device, most significant bit first. the serial data input (d) is sampled on the first rising edge of the serial clock (c) after chip select (s ) goes low. all output data bytes are shifted out of the device, most significant bit first. the serial data output (q) is latched on the firs t falling edge of the serial clock (c) after the instruction (such as the read from memory array and read status register in- structions) have been clocked into the device. figure 4. shows three devices, connected to an mcu, on a spi bus. only one device is selected at a time, so only one device drives the serial data output (q) line at a time, all the others being high impedance. figure 4. bus master and memory devices on the spi bus note: the write protect (w ) and hold (hold ) signals should be driven, high or low as appropriate. ai03746d bus master (st6, st7, st9, st10, others) spi memory device sdo sdi sck cqd s spi memory device cqd s spi memory device cqd s cs3 cs2 cs1 spi interface with (cpol, cpha) = (0, 0) or (1, 1) w hold w hold w hold
m95160, m95080 8/40 spi modes these devices can be driven by a microcontroller with its spi peripheral running in either of the two following modes: ? cpol=0, cpha=0 ? cpol=1, cpha=1 for these two modes, input data is latched in on the rising edge of serial clock (c), and output data is available from the falling edge of serial clock (c). the difference between the two modes, as shown in figure 5. , is the clock polarity when the bus master is in stand-by mode and not transferring data: ? c remains at 0 for (cpol=0, cpha=0) ? c remains at 1 for (cpol=1, cpha=1) figure 5. spi modes supported ai01438b c msb cpha d 0 1 cpol 0 1 q c msb
9/40 m95160, m95080 operating features power-up when the power supply is turned on, v cc rises from v ss to v cc . during this time, the chip select (s ) must be al- lowed to follow the v cc voltage. it must not be al- lowed to float, but should be connected to v cc via a suitable pull-up resistor. as a built in safety feature, chip select (s ) is edge sensitive as well as level sensitive. after power- up, the device does not become selected until a falling edge has first been detected on chip select (s ). this ensures that chip select (s ) must have been high, prior to going low to start the first op- eration. power on reset: v cc lock-out write protect in order to prevent data corruption and inadvertent write instructions during power-up, a power on reset (por) circuit is included. the internal reset is held active until v cc has reached the power on reset (por) threshold voltage, and all operations are disabled ? the device will not respond to any instruction. in the same way, when v cc drops from the operating voltage, below the power on reset (por) threshold voltage, all operations are dis- abled and the device w ill not respond to any in- struction. a stable and valid v cc must be applied before ap- plying any logic signal. power-down at power-down, the device must be deselected. chip select (s ) should be allowed to follow the voltage applied on v cc . active power and standby power modes when chip select (s ) is low, the device is select- ed, and in the active power mode. the device consumes i cc , as specified in table 14. to table 18. . when chip select (s ) is high, the device is dese- lected. if an erase/write cycle is not currently in progress, the device then goes in to the standby power mode, and the device consumption drops to i cc1 . hold condition the hold (hold ) signal is used to pause any se- rial communications with the device without reset- ting the clocking sequence. during the hold condition, the serial data output (q) is high impedance, and serial data input (d) and serial clock (c) are don?t care. to enter the hold condition, the device must be selected, with chip select (s ) low. normally, the device is kept selected, for the whole duration of the hold condition. deselecting the de- vice while it is in the hold condition, has the effect of resetting the state of the device, and this mech- anism can be used if it is required to reset any pro- cesses that had been in progress. the hold condition starts when the hold (hold ) signal is driven low at the same time as serial clock (c) already being low. the hold condition ends when the hold (hold ) signal is driven high at the same time as serial clock (c) already being low.
m95160, m95080 10/40 status register figure 6. shows the position of the status register in the control logic of the device. the status reg- ister contains a number of status and control bits that can be read or set (as appropriate) by specific instructions. wip bit. the write in progress (wip) bit indicates whether the memory is busy with a write or write status register cycle. wel bit. the write enable latch (wel) bit indi- cates the status of the internal write enable latch. bp1, bp0 bits. the block protect (bp1, bp0) bits are non-volatile. they define the size of the area to be software protected against write instructions. srwd bit. the status register write disable (srwd) bit is operated in conjunction with the write protect (w ) signal. the status register write disable (srwd) bit and write protect (w ) signal allow the device to be put in the hardware protected mode. in this mode, the non-volatile bits of the status register (srwd, bp1, bp0) become read-only bits. table 3. status register format data protection and protocol control non-volatile memory devices can be used in envi- ronments that are particularly noisy, and within ap- plications that could experience problems if memory bytes are corrupted. consequently, the device features the following data protection mechanisms: write and write status register instructions are checked that they consist of a number of clock pulses that is a multiple of eight, before they are accepted for execution. all instructions that modify data must be preceded by a write enable (wren) instruction to set the write enable latch (wel) bit. this bit is returned to its reset state by the following events: ? power-up ? write disable (wrdi) instruction completion ? write status register (wrsr) instruction completion ? write (write) instruction completion the block protect (bp1, bp0) bits allow part of the memory to be configured as read-only. this is the software protected mode (spm). the write protect (w ) signal allows the block protect (bp1, bp0) bits to be protected. this is the hardware protected mode (hpm). for any instruction to be accepted, and executed, chip select (s ) must be driven high after the rising edge of serial clock (c) for the last bit of the in- struction, and before the next rising edge of serial clock (c). two points need to be noted in the previous sen- tence: ? the ?last bit of the instruction? can be the eighth bit of the instruction code, or the eighth bit of a data byte, depending on the instruction (except for read status register (rdsr) and read (read) instructions). ? the ?next rising edge of serial clock (c)? might (or might not) be the next bus transaction for some other device on the spi bus. table 4. write-protected block size b7 b0 srwd 0 0 0 bp1 bp0 wel wip status register write protect block protect bits write enable latch bit write in progress bit status register bits protected block array addresses protected bp1 bp0 m95160 m95080 0 0 none none none 0 1 upper quarter 0600h - 07ffh 0300h - 03ffh 1 0 upper half 0400h - 07ffh 0200h - 03ffh 1 1 whole memory 0000h - 07ffh 0000h - 03ffh
11/40 m95160, m95080 memory organization the memory is organized as shown in figure 6. . figure 6. block diagram ai01272c hold s w control logic high voltage generator i/o shift register address register and counter data register 1 page x decoder y decoder c d q size of the read only eeprom area status register
m95160, m95080 12/40 instructions each instruction starts with a single-byte code, as summarized in table 5. . if an invalid instruction is sent (one not contained in table 5. ), the device automatically deselects it- self. table 5. instruction set instruc tion description instruction format wren write enable 0000 0110 wrdi write disable 0000 0100 rdsr read status register 0000 0101 wrsr write status register 0000 0001 read read from memory array 0000 0011 write write to memory array 0000 0010
13/40 m95160, m95080 write enable (wren) the write enable latch (wel) bit must be set pri- or to each write and wrsr instruction. the only way to do this is to send a write enable instruction to the device. as shown in figure 7. , to send this instruction to the device, chip select (s ) is driven low, and the bits of the instruction byte are shifted in, on serial data input (d). the device then enters a wait state. it waits for a the device to be deselected, by chip select (s ) being driven high. figure 7. write enable (wren) sequence write disable (wrdi) one way of resetting the write enable latch (wel) bit is to send a write disable instruction to the device. as shown in figure 8. , to send this instruction to the device, chip select (s ) is driven low, and the bits of the instruction byte are shifted in, on serial data input (d). the device then enters a wait state. it waits for a the device to be deselected, by chip select (s ) be- ing driven high. the write enable latch (wel) bit, in fact, be- comes reset by any of the following events: ?power-up ? wrdi instruction execution ? wrsr instruction completion ? write instruction completion. figure 8. write disable (wrdi) sequence c d ai02281e s q 2 1 34567 high impedance 0 instruction c d ai03750d s q 2 1 34567 high impedance 0 instruction
m95160, m95080 14/40 read status register (rdsr) the read status register (rdsr) instruction al- lows the status register to be read. the status register may be read at any time, even while a write or write status register cycle is in progress. when one of these cycles is in progress, it is rec- ommended to check the write in progress (wip) bit before sending a new instruction to the device. it is also possible to read the status register con- tinuously, as shown in figure 9. . the status and control bits of the status register are as follows: wip bit. the write in progress (wip) bit indicates whether the memory is busy with a write or write status register cycle. when set to 1, such a cycle is in progress, when reset to 0 no such cycle is in progress. wel bit. the write enable latch (wel) bit indi- cates the status of the internal write enable latch. when set to 1 the internal write enable latch is set, when set to 0 the internal write enable latch is reset and no write or write status register in- struction is accepted. bp1, bp0 bits. the block protect (bp1, bp0) bits are non-volatile. they define the size of the area to be software protected against write instructions. these bits are written with the write status regis- ter (wrsr) instruction. when one or both of the block protect (bp1, bp0) bits is set to 1, the rele- vant memory area (as defined in table 3. ) be- comes protected against write (write) instructions. the block protect (bp1, bp0) bits can be written provided that the hardware protect- ed mode has not been set. srwd bit. the status register write disable (srwd) bit is operated in conjunction with the write protect (w ) signal. the status register write disable (srwd) bit and write protect (w ) signal allow the device to be put in the hardware protected mode (when the status register write disable (srwd) bit is set to 1, and write protect (w ) is driven low). in this mode, the non-volatile bits of the status register (srwd, bp1, bp0) be- come read-only bits and the write status register (wrsr) instruction is no longer accepted for exe- cution. figure 9. read status register (rdsr) sequence c d s 2 1 3456789101112131415 instruction 0 ai02031e q 7 6543210 status register out high impedance msb 7 6543210 status register out msb 7
15/40 m95160, m95080 write status register (wrsr) the write status register (wrsr) instruction al- lows new values to be written to the status regis- ter. before it can be accepted, a write enable (wren) instruction must previously have been ex- ecuted. after the write enable (wren) instruction has been decoded and executed, the device sets the write enable latch (wel). the write status register (wrsr) instruction is entered by driving chip select (s ) low, followed by the instruction code and the data byte on serial data input (d). the instruction sequence is shown in figure 10. . the write status register (wrsr) instruction has no effect on b6, b5, b4, b1 and b0 of the status register. b6, b5 and b4 are always read as 0. chip select (s ) must be driven high after the rising edge of serial clock (c) that latches in the eighth bit of the data byte, and before the next rising edge of serial clock (c). otherwise, the write status register (wrsr) instruction is not executed. as soon as chip select (s ) is driven high, the self- timed write status register cycle (whose duration is t w ) is initiated. while the write status register cycle is in progress, the status register may still be read to check the value of the write in progress (wip) bit. the write in progress (wip) bit is 1 dur- ing the self-timed write status register cycle, and is 0 when it is completed. when the cycle is com- pleted, the write enable latch (wel) is reset. the write status register (wrsr) instruction al- lows the user to change the values of the block protect (bp1, bp0) bits, to define the size of the area that is to be treated as read-only, as defined in table 3. . the write status register (wrsr) instruction also allows the user to set or reset the status register write disable (srwd) bit in accordance with the write protect (w ) signal. the status register write disable (srwd) bit and write protect (w ) signal allow the device to be put in the hardware protected mode (hpm). the write status register (wrsr) instruction is not executed once the hard- ware protected mode (hpm) is entered. the contents of the status register write disable (srwd) and block protect (bp1, bp0) bits are fro- zen at their current values from just before the start of the execution of write status register (wrsr) instruction. the new, updated, values take effect at the moment of completion of the ex- ecution of write status register (wrsr) instruc- tion. table 6. protection modes note: 1. as defined by the values in the block protect (bp1, bp0) bits of the status register, as shown in table 6. . the protection features of the device are summa- rized in table 4. . when the status register write disable (srwd) bit of the status register is 0 (its initial delivery state), it is possible to write to the status register provided that the write enable latch (wel) bit has previously been set by a write enable (wren) in- struction, regardless of the whether write protect (w ) is driven high or low. when the status register write disable (srwd) bit of the status register is set to 1, two cases need to be considered, depending on the state of write protect (w ): ? if write protect (w ) is driven high, it is possible to write to the status register provided that the write enable latch (wel) bit has previously been set by a write enable (wren) instruction. ? if write protect (w ) is driven low, it is not possible to write to the status register even if the write enable latch (wel) bit has previously been set by a write enable (wren) instruction. (attempts to write to the status register are rejected, and are not accepted for execution). as a consequence, all the data bytes in the memory area that are software protected (spm) by the block protect w signal srwd bit mode write protection of the status register memory content protected area 1 unprotected area 1 10 software protected (spm) status register is writable (if the wren instruction has set the wel bit) the values in the bp1 and bp0 bits can be changed write protected ready to accept write instructions 00 11 01 hardware protected (hpm) status register is hardware write protected the values in the bp1 and bp0 bits cannot be changed write protected ready to accept write instructions
m95160, m95080 16/40 (bp1, bp0) bits of the status register, are also hardware protected against data modification. regardless of the order of the two events, the hardware protected mode (hpm) can be entered: ? by setting the status register write disable (srwd) bit after driving write protect (w ) low ? or by driving write protect (w ) low after setting the status register write disable (srwd) bit. the only way to exit the hardware protected mode (hpm) once entered is to pull write protect (w ) high. if write protect (w ) is permanently tied high, the hardware protected mode (hpm) can never be activated, and only the software protected mode (spm), using the block protect (bp1, bp0) bits of the status register, can be used. table 7. address range bits note: b15 to b11 are don?t care on the m95160. b15 to b10 are don?t care on the m95080. figure 10. write status register (wrsr) sequence device m95160 m95080 address bits a10-a0 a9-a0 c d ai02282d s q 2 1 3456789101112131415 high impedance instruction status register in 0 765432 0 1 msb
17/40 m95160, m95080 read from memory array (read) as shown in figure 11. , to send this instruction to the device, chip select (s ) is first driven low. the bits of the instruction byte and address bytes are then shifted in, on serial data input (d). the ad- dress is loaded into an internal address register, and the byte of data at that address is shifted out, on serial data output (q). if chip select (s ) continues to be driven low, the internal address register is automatically incre- mented, and the byte of data at the new address is shifted out. when the highest address is reached, the address counter rolls over to ze ro, allowing the read cycle to be continued indefinitely. the whole memory can, therefore, be read with a single read instruc- tion. the read cycle is terminated by driving chip se- lect (s ) high. the rising edge of the chip select (s ) signal can occur at any time during the cycle. the first byte addressed can be any byte within any page. the instruction is not accepted, and is not execut- ed, if a write cycle is currently in progress. figure 11. read from memory array (read) sequence note: depending on the memory size, as shown in table 7. , the most significant address bits are don?t care. c d ai01793d s q 15 2 1 345678910 2021222324252627 1413 3210 28 29 30 76543 1 7 0 high impedance data out 1 instruction 16-bit address 0 msb msb 2 31 data out 2
m95160, m95080 18/40 write to memory array (write) as shown in figure 12. , to send this instruction to the device, chip select (s ) is first driven low. the bits of the instruction byte, address byte, and at least one data byte are then shifted in, on serial data input (d). the instruction is terminated by driving chip se- lect (s ) high at a byte boundary of the input data. in the case of figure 12. , this occurs after the eighth bit of the data byte has been latched in, in- dicating that the instruction is being used to write a single byte. the self-timed write cycle starts, and continues for a period t wc (as specified in ta- ble 19. to table 23. ), at the end of which the write in progress (wip) bit is reset to 0. if, though, chip select (s ) continues to be driven low, as shown in figure 13. , the next byte of input data is shifted in, so that more than a single byte, starting from the given address towards the end of the same page, can be written in a single internal write cycle. each time a new data byte is shifted in, the least significant bits of the internal address counter are incremented. if the number of data bytes sent to the device exceeds the page boundary, the inter- nal address counter rolls over to the beginning of the page, and the previous data there are overwrit- ten with the incoming data. (the page size of these devices is 32 bytes). the instruction is not accepted, and is not execut- ed, under the following conditions: ? if the write enable latch (wel) bit has not been set to 1 (by executing a write enable instruction just before) ? if a write cycle is already in progress ? if the device has not been deselected, by chip select (s ) being driven high, at a byte boundary (after the eighth bit, b0, of the last data byte that has been latched in) ? if the addressed page is in the region protected by the block protect (bp1 and bp0) bits. figure 12. byte write (write) sequence note: depending on the memory size, as shown in table 7. , the most significant address bits are don?t care. c d ai01795d s q 15 2 1 345678910 2021222324252627 1413 3210 28 29 30 high impedance instruction 16-bit address 0 765432 0 1 data byte 31
19/40 m95160, m95080 figure 13. page write (write) sequence note: depending on the memory size, as shown in table 7. , the most significant address bits are don?t care. c d ai01796d s 34 33 35 36 37 38 39 40 41 42 44 45 46 47 32 c d s 15 2 1 345678910 2021222324252627 1413 3210 28 29 30 instruction 16-bit address 0 765432 0 1 data byte 1 31 43 765432 0 1 data byte 2 765432 0 1 data byte 3 65432 0 1 data byte n
m95160, m95080 20/40 power-up and delivery state power-up state after power-up, the device is in the following state: ? standby power mode ? deselected (after power-up, a falling edge is required on chip select (s ) before any instructions can be started). ? not in the hold condition ? the write enable latch (wel) is reset to 0 ? write in progress (wip) is reset to 0 the srwd, bp1 and bp0 bits of the status reg- ister are unchanged from the previous power- down (they are non-volatile bits). initial delivery state the device is delivered with the memory array set at all 1s (ffh). the status register write disable (srwd) and block protect (bp1 and bp0) bits are initialized to 0.
21/40 m95160, m95080 maximum rating stressing the device outside the ratings listed in table 8. may cause permanent damage to the de- vice. these are stress ratings only, and operation of the device at these, or any other conditions out- side those indicated in the operating sections of this specification, is not implied. exposure to ab- solute maximum rating conditions for extended periods may affect device reliability. refer also to the stmicroelectronics sure program and other relevant quality documents. table 8. absolute maximum ratings note: 1. compliant with jedec std j-std-020b (for small body, sn-pb or pb assembly), the st ecopack ? 7191395 specification, and the european directive on restrictions on hazardous substances (rohs) 2002/95/eu 2. aec-q100-002 (compliant with jedec std jesd22-a114a, c1=100pf, r1=1500 ? , r2=500 ? ) symbol parameter min. max. unit t stg storage temperature ?65 150 c t lead lead temperature during soldering see note 1 c v o output voltage ?0.50 v cc +0.6 v v i input voltage ?0.50 6.5 v v cc supply voltage ?0.50 6.5 v v esd electrostatic discharge voltage (human body model) 2 ?4000 4000 v
m95160, m95080 22/40 dc and ac parameters this section summarizes the operating and mea- surement conditions, and the dc and ac charac- teristics of the device. the parameters in the dc and ac characteristic tables that follow are de- rived from tests performed under the measure- ment conditions summarized in the relevant tables. designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parame- ters. table 9. operating conditions (m95xxx) table 10. operating conditions (m95xxx-w) table 11. operating conditions (m95xxx-r) note: 1. this product is under development. for more information, please contact your nearest st sales office. table 12. ac measurement conditions note: output hi-z is defined as the point where data out is no longer driven. figure 14. ac measurement i/o waveform symbol parameter min. max. unit v cc supply voltage 4.5 5.5 v t a ambient operating temperature (device grade 6) ?40 85 c ambient operating temperature (device grade 3) ?40 125 c symbol parameter min. max. unit v cc supply voltage 2.5 5.5 v t a ambient operating temperature (device grade 6) ?40 85 c ambient operating temperature (device grade 3) ?40 125 c symbol parameter min. 1 max. 1 unit v cc supply voltage 1.8 5.5 v t a ambient operating temperature ?40 85 c symbol parameter min. max. unit c l load capacitance 100 pf input rise and fall times 50 ns input pulse voltages 0.2v cc to 0.8v cc v input and output timing reference voltages 0.3v cc to 0.7v cc v ai00825b 0.8v cc 0.2v cc 0.7v cc 0.3v cc input and output timing reference levels input levels
23/40 m95160, m95080 table 13. capacitance note: sampled only, not 100% tested, at t a =25c and a frequency of 5 mhz. table 14. dc characteristics (m95xxx, device grade 6) note: 1. for all 5v range devices, the device meets the output requirements for both ttl and cmos standards. 2. previous product: identified by process identification letter l. 3. present product: identified by process identification letter w or g. symbol parameter test condition min. max. unit c out output capacitance (q) v out = 0v 8 pf c in input capacitance (d) v in = 0v 8 pf input capacitance (other pins) v in = 0v 6 pf symbol parameter test condition min. max. unit i li input leakage current v in = v ss or v cc 2 a i lo output leakage current s = v cc , v out = v ss or v cc 2 a i cc supply current c=0.1v cc /0.9v cc at 5mhz, v cc = 5 v, q = open, previous product 2 4ma c = 0.1v cc /0.9v cc at 10mhz, v cc = 5 v, q = open, present product 3 5ma i cc1 supply current (standby power mode) s = v cc , v cc = 5 v, v in = v ss or v cc , previous product 2 10 a s = v cc , v cc = 5 v, v in = v ss or v cc , present product 3 2a v il input low voltage ?0.45 0.3 v cc v v ih input high voltage 0.7 v cc v cc +1 v v ol 1 output low voltage i ol = 2 ma, v cc = 5 v 0.4 v v oh 1 output high voltage i oh = ?2 ma, v cc = 5v 0.8v cc v
m95160, m95080 24/40 table 15. dc characteristics (m95xxx, device grade 3) note: 1. for all 5v range devices, the device meets the output requirements for both ttl and cmos standards. 2. previous product: identified by process identification letter l. 3. present product: identified by process identification letter w or g. table 16. dc characteristics (m95xxx-w, device grade 6) note: 1. previous product: identified by process identification letter l. 2. present product: identified by process identification letter w or g. symbol parameter test condition min. max. unit i li input leakage current v in = v ss or v cc 2 a i lo output leakage current s = v cc , v out = v ss or v cc 2 a i cc supply current c = 0.1v cc /0.9v cc at 2 mhz, v cc = 5 v, q = open, previous product 2 4ma c = 0.1v cc /0.9v cc at 5 mhz, v cc = 5 v, q = open, present product 3 3ma i cc1 supply current (standby power mode) s = v cc , v cc = 5 v, v in = v ss or v cc , previous product 2 10 a s = v cc , v cc = 5 v, v in = v ss or v cc , present product 3 5a v il input low voltage ?0.45 0.3 v cc v v ih input high voltage 0.7 v cc v cc +1 v v ol 1 output low voltage i ol = 2 ma, v cc = 5 v 0.4 v v oh 1 output high voltage i oh = ?2 ma, v cc = 5v 0.8v cc v symbol parameter test condition min. max. unit i li input leakage current v in = v ss or v cc 2 a i lo output leakage current s = v cc , v out = v ss or v cc 2 a i cc supply current c = 0.1v cc /0.9v cc at 2 mhz, v cc = 2.5 v, q = open, previous product 1 2ma c = 0.1v cc /0.9v cc at 5 mhz, v cc = 2.5 v, q = open, present product 2 2ma i cc1 supply current (standby power mode) s = v cc , v cc = 2.5 v, v in = v ss or v cc , previous product 1 2a s = v cc , v cc = 2.5 v v in = v ss or v cc , present product 2 1a v il input low voltage ?0.45 0.3 v cc v v ih input high voltage 0.7 v cc v cc +1 v v ol output low voltage i ol = 1.5 ma, v cc = 2.5 v 0.4 v v oh output high voltage i oh = ?0.4 ma, v cc = 2.5 v 0.8 v cc v
25/40 m95160, m95080 table 17. dc characteristics (m95xxx-w, device grade 3) note: 1. previous product: identified by process identification letter l. 2. present product: identified by process identification letter w or g. table 18. dc characteristics (m95xxx-r) note: 1. this product is under development. for more information, please contact your nearest st sales office. symbol parameter test condition min. max. unit i li input leakage current v in = v ss or v cc 2 a i lo output leakage current s = v cc , v out = v ss or v cc 2 a i cc supply current c = 0.1v cc /0.9v cc at 2 mhz, v cc = 2.5 v, q = open, previous product 1 5ma c = 0.1v cc /0.9v cc at 5 mhz, v cc = 2.5 v, q = open, present product 2 2ma i cc1 supply current (standby power mode) s = v cc , v cc = 2.5 v, v in = v ss or v cc 2a v il input low voltage ?0.45 0.3 v cc v v ih input high voltage 0.7 v cc v cc +1 v v ol output low voltage i ol = 1.5 ma, v cc = 2.5 v 0.4 v v oh output high voltage i oh = ?0.4 ma, v cc = 2.5 v 0.8 v cc v symbol parameter test condition min. 1 max. 1 unit i li input leakage current v in = v ss or v cc 2 a i lo output leakage current s = v cc , v out = v ss or v cc 2 a i cc supply current c = 0.1v cc /0.9v cc at 2 mhz, v cc = 1.8 v, q = open 1ma i cc1 supply current (standby power mode) s = v cc , v in = v ss or v cc , v cc = 1.8 v 0.5 a v il input low voltage ?0.45 0.3 v cc v v ih input high voltage 0.7 v cc v cc +1 v v ol output low voltage i ol = 0.15 ma, v cc = 1.8 v 0.3 v v oh output high voltage i oh = ?0.1 ma, v cc = 1.8 v 0.8 v cc v
m95160, m95080 26/40 table 19. ac characteristics (m95xxx, device grade 6) note: 1. t ch + t cl must never be less than the shortest possible clock period, 1 / f c (max) 2. value guaranteed by characterization, not 100% tested in production. 3. to be characterized. 4. previous product: identified by process identification letter l. 5. present product: identified by process identification letter w or g. test conditions specified in table 12. and table 9. symbol alt. parameter min. 4 max. 4 min. 5 max. 5 unit f c f sck clock frequency d.c. 5 d.c. 10 mhz t slch t css1 s active setup time 90 15 ns t shch t css2 s not active setup time 90 15 ns t shsl t cs s deselect time 100 40 ns t chsh t csh s active hold time 90 25 ns t chsl s not active hold time 90 15 ns t ch 1 t clh clock high time 90 40 ns t cl 1 t cll clock low time 90 40 ns t clch 2 t rc clock rise time 1 1 s t chcl 2 t fc clock fall time 1 1 s t dvch t dsu data in setup time 20 15 ns t chdx t dh data in hold time 30 15 ns t hhch clock low hold time after hold not active 70 15 ns t hlch clock low hold time after hold active 40 20 ns t clhl clock low set-up time before hold active 0 0 ns t clhh clock low set-up time before hold not active 0 0 ns t shqz 2 t dis output disable time 100 25 ns t clqv t v clock low to output valid 60 35 ns t clqx t ho output hold time 0 0 ns t qlqh 2 t ro output rise time 50 20 ns t qhql 2 t fo output fall time 50 20 ns t hhqv t lz hold high to output valid 50 25 ns t hlqz 2 t hz hold low to output high-z 100 35 ns t w t wc write time 10 5 ms
27/40 m95160, m95080 table 20. ac characteristics (m95xxx, device grade 3) note: 1. t ch + t cl must never be less than the shortest possible clock period, 1 / f c (max) 2. value guaranteed by characterization, not 100% tested in production. 3. to be characterized. 4. previous product: identified by process identification letter l. 5. present product: identified by process identification letter w or g. test conditions specified in table 12. and table 9. symbol alt. parameter min. 4 max. 4 min. 5 max. 5 unit f c f sck clock frequency d.c. 2 d.c. 5 mhz t slch t css1 s active setup time 200 90 ns t shch t css2 s not active setup time 200 90 ns t shsl t cs s deselect time 200 100 ns t chsh t csh s active hold time 200 90 ns t chsl s not active hold time 200 90 ns t ch 1 t clh clock high time 200 90 ns t cl 1 t cll clock low time 200 90 ns t clch 2 t rc clock rise time 1 1 s t chcl 2 t fc clock fall time 1 1 s t dvch t dsu data in setup time 40 20 ns t chdx t dh data in hold time 50 30 ns t hhch clock low hold time after hold not active 140 70 ns t hlch clock low hold time after hold active 90 40 ns t clhl clock low set-up time before hold active 0 0 ns t clhh clock low set-up time before hold not active 00ns t shqz 2 t dis output disable time 250 100 ns t clqv t v clock low to output valid 150 60 ns t clqx t ho output hold time 0 0 ns t qlqh 2 t ro output rise time 100 50 ns t qhql 2 t fo output fall time 100 50 ns t hhqv t lz hold high to output valid 100 50 ns t hlqz 2 t hz hold low to output high-z 250 100 ns t w t wc write time 10 5 ms
m95160, m95080 28/40 table 21. ac characteristics (m95xxx-w, device grade 6) note: 1. t ch + t cl must never be less than the shortest possible clock period, 1 / f c (max) 2. value guaranteed by characterization, not 100% tested in production. 3. to be characterized. 4. previous product: identified by process identification letter l. 5. present product: identified by process identification letter w or g. test conditions specified in table 12. and table 10. symbol alt. parameter min. 4 max. 4 min. 5 max. 5 unit f c f sck clock frequency d.c. 2 d.c. 5 mhz t slch t css1 s active setup time 200 90 ns t shch t css2 s not active setup time 200 90 ns t shsl t cs s deselect time 200 100 ns t chsh t csh s active hold time 200 90 ns t chsl s not active hold time 200 90 ns t ch 1 t clh clock high time 200 90 ns t cl 1 t cll clock low time 200 90 ns t clch 2 t rc clock rise time 1 1 s t chcl 2 t fc clock fall time 1 1 s t dvch t dsu data in setup time 40 20 ns t chdx t dh data in hold time 50 30 ns t hhch clock low hold time after hold not active 140 70 ns t hlch clock low hold time after hold active 90 40 ns t clhl clock low set-up time before hold active 0 0 ns t clhh clock low set-up time before hold not active 0 0 ns t shqz 2 t dis output disable time 250 100 ns t clqv t v clock low to output valid 150 60 ns t clqx t ho output hold time 0 0 ns t qlqh 2 t ro output rise time 100 50 ns t qhql 2 t fo output fall time 100 50 ns t hhqv t lz hold high to output valid 100 50 ns t hlqz 2 t hz hold low to output high-z 250 100 ns t w t wc write time 10 5 ms
29/40 m95160, m95080 table 22. ac characteristics (m95xxx-w, device grade 3) note: 1. t ch + t cl must never be less than the shortest possible clock period, 1 / f c (max) 2. value guaranteed by characterization, not 100% tested in production. 3. to be characterized. 4. previous product: identified by process identification letter l. 5. present product: identified by process identification letter w or g. test conditions specified in table 12. and table 10. symbol alt. parameter min. 4 max. 4 min. 5 max. 5 unit f c f sck clock frequency d.c. 2 d.c. 5 mhz t slch t css1 s active setup time 200 90 ns t shch t css2 s not active setup time 200 90 ns t shsl t cs s deselect time 200 100 ns t chsh t csh s active hold time 200 90 ns t chsl s not active hold time 200 90 ns t ch 1 t clh clock high time 200 90 ns t cl 1 t cll clock low time 200 90 ns t clch 2 t rc clock rise time 1 1 s t chcl 2 t fc clock fall time 1 1 s t dvch t dsu data in setup time 40 20 ns t chdx t dh data in hold time 50 30 ns t hhch clock low hold time after hold not active 140 70 ns t hlch clock low hold time after hold active 90 40 ns t clhl clock low set-up time before hold active 0 0 ns t clhh clock low set-up time before hold not active 00ns t shqz 2 t dis output disable time 250 100 ns t clqv t v clock low to output valid 150 60 ns t clqx t ho output hold time 0 0 ns t qlqh 2 t ro output rise time 100 50 ns t qhql 2 t fo output fall time 100 50 ns t hhqv t lz hold high to output valid 100 50 ns t hlqz 2 t hz hold low to output high-z 250 100 ns t w t wc write time 10 5 ms
m95160, m95080 30/40 table 23. ac characteristics (m95xxx-r) note: 1. t ch + t cl must never be less than the shortest possible clock period, 1 / f c (max) 2. value guaranteed by characterization, not 100% tested in production. 3. to be characterized. 4. this product is under development. for more information, please contact your nearest st sales office. 5. this is preliminary data. test conditions specified in table 12. and table 11. symbol alt. parameter min. 4,5 max. 4,5 unit f c f sck clock frequency d.c. 2 mhz t slch t css1 s active setup time 200 ns t shch t css2 s not active setup time 200 ns t shsl t cs s deselect time 200 ns t chsh t csh s active hold time 200 ns t chsl s not active hold time 200 ns t ch 1 t clh clock high time 200 ns t cl 1 t cll clock low time 200 ns t clch 2 t rc clock rise time 1 s t chcl 2 t fc clock fall time 1 s t dvch t dsu data in setup time 40 ns t chdx t dh data in hold time 50 ns t hhch clock low hold time after hold not active 140 ns t hlch clock low hold time after hold active 90 ns t clhl clock low set-up time before hold active 0 ns t clhh clock low set-up time before hold not active 0 ns t shqz 2 t dis output disable time 250 ns t clqv t v clock low to output valid 150 ns t clqx t ho output hold time 0 ns t qlqh 2 t ro output rise time 100 ns t qhql 2 t fo output fall time 100 ns t hhqv t lz hold high to output valid 100 ns t hlqz 2 t hz hold low to output high-z 250 ns t w t wc write time 10 ms
31/40 m95160, m95080 figure 15. serial input timing figure 16. hold timing c d ai01447c s msb in q tdvch high impedance lsb in tslch tchdx tchcl tclch tshch tshsl tchsh tchsl c q ai01448b s d hold tclhl thlch thhch tclhh thhqv thlqz
m95160, m95080 32/40 figure 17. output timing c q ai01449d s lsb out d addr.lsb in tshqz tch tcl tqlqh tqhql tclqx tclqv tclqx tclqv
33/40 m95160, m95080 package mechanical figure 18. pdip8 ? 8 pin plastic dip, 0.25mm lead frame, package outline note: drawing is not to scale. table 24. pdip8 ? 8 pin plastic dip, 0.25mm lead frame, package mechanical data symb. mm inches typ. min. max. typ. min. max. a 5.33 0.210 a1 0.38 0.015 a2 3.30 2.92 4.95 0.130 0.115 0.195 b 0.46 0.36 0.56 0.018 0.014 0.022 b2 1.52 1.14 1.78 0.060 0.045 0.070 c 0.25 0.20 0.36 0.010 0.008 0.014 d 9.27 9.02 10.16 0.365 0.355 0.400 e 7.87 7.62 8.26 0.310 0.300 0.325 e1 6.35 6.10 7.11 0.250 0.240 0.280 e2.54??0.100?? ea 7.62 ? ? 0.300 ? ? eb 10.92 0.430 l 3.30 2.92 3.81 0.130 0.115 0.150 pdip-b a2 a1 a l be d e1 8 1 c ea b2 eb e
m95160, m95080 34/40 figure 19. so8 narrow ? 8 lead plastic small outline, 150 mils body width, package outline note: drawing is not to scale. table 25. so8 narrow ? 8 lead plastic small outline, 150 mils body width, mechanical data symbol millimeters inches typ min max typ min max a 1.35 1.75 0.053 0.069 a1 0.10 0.25 0.004 0.010 a2 1.10 1.65 0.043 0.065 b 0.33 0.51 0.013 0.020 c 0.19 0.25 0.007 0.010 d 4.80 5.00 0.189 0.197 ddd 0.10 0.004 e 3.80 4.00 0.150 0.157 e 1.27 ? ? 0.050 ? ? h 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 l 0.40 0.90 0.016 0.035 0 8 0 8 n8 8 so-a e 8 ddd b e a d c l a1 1 h h x 45? a2
35/40 m95160, m95080 figure 20. ufdfpn8 (mlp8) 8-lead ultra thin fine pitch dual flat package no lead 2x3mm2, outline note: 1. drawing is not to scale. 2. the central pad (the area e2 by d2 in the above illustration) is pulled, internally, to v ss . it must not be allowed to be connected to any other voltage or signal line on the pcb, for example during the soldering process. table 26. ufdfpn8 (mlp8) 8-lead ultra thin fine pitch dual flat package no lead 2x3mm2, data symbol mm inches typ. min. max. typ. min. max. a 0.55 0.50 0.60 0.022 0.020 0.024 a1 0.00 0.05 0.000 0.002 b 0.25 0.20 0.30 0.010 0.008 0.012 d 2.00 0.079 d2 1.55 1.65 0.061 0.065 ddd 0.05 0.002 e 3.00 0.118 e2 0.15 0.25 0.006 0.010 e 0.50 ? ? 0.020 ? ? l 0.45 0.40 0.50 0.018 0.016 0.020 l1 0.15 0.006 l3 0.30 0.012 n8 8 d e ufdfpn-01 a a1 ddd l1 e b d2 l e2 l3
m95160, m95080 36/40 figure 21. tssop8 ? 8 lead thin shrink small outline, package outline note: drawing is not to scale. table 27. tssop8 ? 8 lead thin shrink small outline, package mechanical data symbol millimeters inches typ min max typ min max a 1.200 0.0472 a1 0.050 0.150 0.0020 0.0059 a2 1.000 0.800 1.050 0.0394 0.0315 0.0413 b 0.190 0.300 0.0075 0.0118 c 0.090 0.200 0.0035 0.0079 cp 0.100 0.0039 d 3.000 2.900 3.100 0.1181 0.1142 0.1220 e 0.650 ? ? 0.0256 ? ? e 6.400 6.200 6.600 0.2520 0.2441 0.2598 e1 4.400 4.300 4.500 0.1732 0.1693 0.1772 l 0.600 0.450 0.750 0.0236 0.0177 0.0295 l1 1.000 0.0394 0 8 0 8 n8 8 tssop8am 1 8 cp c l e e1 d a2 a e b 4 5 a1 l1
37/40 m95160, m95080 figure 22. tssop8 3x3mm2 ? 8 lead thin shrink small outline, 3x3mm2 body size, package outline note: drawing is not to scale. table 28. tssop8 3x3mm2 ? 8 lead thin shrink small outline, 3x3mm2 body size, mechanical data symbol millimeters inches typ min max typ min max a 1.100 0.0433 a1 0.050 0.150 0.0020 0.0059 a2 0.850 0.750 0.950 0.0335 0.0295 0.0374 b 0.250 0.400 0.0098 0.0157 c 0.130 0.230 0.0051 0.0091 d 3.000 2.900 3.100 0.1181 0.1142 0.1220 e 4.900 4.650 5.150 0.1929 0.1831 0.2028 e1 3.000 2.900 3.100 0.1181 0.1142 0.1220 e 0.650 ? ? 0.0256 ? ? cp 0.100 0.0039 l 0.550 0.400 0.700 0.0217 0.0157 0.0276 l1 0.950 0.0374 0 6 0 6 n8 8 tssop8bm 1 8 cp c l e e1 d a2 a e b 4 5 a1 l1
m95160, m95080 38/40 part numbering table 29. ordering information scheme note: 1. st strongly recommends the use of the automotive grade devices for use in an automotive environment. the high reliabilit y cer- tified flow (hrcf) is described in the quality note qnee9801. please ask your nearest st sales office for a copy. 2. tssop8, 169 mil width, package is not available for the m95160 identified by the process identification letter l. 3. tssop8, 3x3mm body size, package is available for the m95080 series only. 4. used only for device grade 3 for a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest st sales of- fice. table 30. how to identify present and previous products by the process identification letter note: 1. this example comes from the s08 package. other packages have similar information. for further information, please ask yo ur st sales office for process change notice pcn mpg/ee/0034 (pcee0034). example: m95160 ? w mn 6 t p /w device type m95 = spi serial access eeprom device function 160 = 16 kbit (2048 x 8) 080 = 8 kbit (1024 x 8) operating voltage blank = v cc = 4.5 to 5.5v w = v cc = 2.5 to 5.5v r = v cc = 1.8 to 5.5v package bn = pdip8 mn = so8 (150 mil width) dw 2 = tssop8 ds 3 = tssop8 (3x3mm body size, msop) mb = mlp8 (ufdfpn8) device grade 6 = industrial temperature range, ?40 to 85 c. device tested with standard test flow 3 = device tested with high reliability certified flow 1 . automotive temperature range (?40 to 125 c) option blank = standard packing t = tape and reel packing plating technology blank = standard snpb plating p = lead-free and rohs compliant g = lead-free, rohs compliant, sb 2 o 3 -free and tbba-free process 4 blank = f6sp20% /w = f6sp36% markings on present products 1 markings on previous products 1 95160w6 ayww w (or ayww g ) 95160w6 ayw w l
39/40 m95160, m95080 revision history table 31. document revision history date rev. description of revision 19-jul-2001 1.0 document written from previous m95640/320/160/080 datasheet 06-feb-2002 1.1 announcement made of planned upgrade to 10mhz clock for the 5v, ?40 to 85c, range 18-oct-2002 1.2 tssop8 (3x3mm body size, msop8) package added 04-nov-2002 1.3 new products, identified by the process letter w, added 13-nov-2002 1.4 correction to footnote in ordering information table 21-nov-2003 2.0 table of contents, and pb-free options added. v il (min) improved to ?0.45v 08-jun-2004 3.0 mlp8 package added. absolute maximum ratings for v io (min) and v cc (min) improved. soldering temperature information clarified for rohs compliant devices. device grade 3 clarified, with reference to hrcf and automotive environments. process identification letter ?g? information added. so8 narrow and tssop8 package mechanical specifications updated. 07-oct-2004 4.0 product list summary table added. aec-q100-002 compliance. thhqx corrected to thhqv. 10mhz, 5ms write is now the present product. tch+tcl<1/fc constraint clarified
m95160, m95080 40/40 information furnished is believed to be accurate and reliable. however, stmicroelectronics assumes no responsibility for the co nsequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. no license is granted by implication or otherwise under any patent or patent rights of stmicroelectronics. specifications mentioned in this publicati on are subject to change without notice. this publication supersedes and replaces all information previously supplied. stmicroelectronics prod ucts are not authorized for use as critical components in life support devices or systems without express written approval of stmicroelectro nics. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners ? 2004 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of M95080-MB3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X